Waveforms of Langmuir turbulence in inhomogeneous solar wind plasmas

نویسندگان

  • C Krafft
  • A. Volokitin
  • V. V. Krasnoselskikh
  • Thierry Dudok de Wit
  • C. Krafft
  • A. S. Volokitin
چکیده

Modulated Langmuir waveforms have been observed by several spacecraft in various regions of the heliosphere, such as the solar wind, the electron foreshock, the magnetotail, or the auroral ionosphere. Many observations revealed the bursty nature of these waves, which appear to be highly modulated, localized, and clumped into spikes with peak amplitudes typically 3 orders of magnitude above the mean. The paper presents Langmuir waveforms calculated using a Hamiltonian model describing self-consistently the resonant interaction of an electron beam with Langmuir wave packets in a plasma with random density fluctuations. These waveforms, obtained for different profiles of density fluctuations and ranges of parameters relevant to solar type III electron beams and plasmas measured at 1 AU, are presented in the form they would appear if recorded by a satellite moving in the solar wind. Comparison with recent measurements by the STEREO andWIND satellites shows that their characteristic features are very similar to the observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cascade and Damping of Alfvén-Cyclotron Fluctuations: Application to Solar Wind Turbulence Spectrum

With the diffusion approximation, we study the cascade and damping of Alfvén-cyclotron fluctuations in solar plasmas numerically. Motivated by wavewave couplings and nonlinear effects, we test several forms of the diffusion tensor. For a general locally anisotropic and inhomogeneous diffusion tensor in the wave vector space, the turbulence spectrum in the inertial range can be fitted with power...

متن کامل

Langmuir Wave Electric Fields Induced by Electron Beams in the Heliosphere

Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in-situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulate...

متن کامل

Interplanetary and interstellar plasma turbulence

Theoretical approaches to low-frequencymagnetized turbulence in collisionless and weakly collisional astrophysical plasmas are reviewed. The proper starting point for an analytical description of these plasmas is kinetic theory, not fluid equations. The anisotropy of the turbulence is used to systematically derive a series of reduced analytical models. Above the ion gyroscale, it is shown rigou...

متن کامل

Comment on "Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations".

Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvénic state. An analogous phenomenological scaling law, suitably modified to take i...

متن کامل

Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017